

Date Planned ://	Daily Tutorial Sheet-2	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level-1	Exact Duration :		

			()	()					
16.	For the reaction,	$2HI(g) \rightleftharpoons H_2$	(g) + 1	I ₂ (g) -	- Q kJ ,	the equilibrium	constant de	pends upo	n:

(A) Temperature only

(B) Pressure

(C) Catalyst

(D) Volume

17. 1.6 moles of PCl_5 (g) is placed in 4 dm³ closed vessel. When the temperature is raised to 500 K, it decomposes and at equilibrium 1.2 moles of PCl_5 (g) remains. What is the K_c value for the decomposition of PCl_5 (g) to PCl_3 (g) and Cl_2 at 500 K

(A) 0.013

(B) 0.050

(C) 0.033

(D) 0.067

18. Ammonium carbamate decomposes as :

$$NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

For the reaction, $K_p = 2.9 \times 10^{-5} atm^3$. If we start with 1 mole of the compound, the total pressure at equilibrium would be:

(A) 0.766 atm

(B) 0.0582 atm

(C) 0.0388

(D) 0.0194 atm

4 moles each of SO₂ and O₂ gases are allowed to react to form SO₃ in a closed vessel. At equilibrium 25% of O₂ is used up. The total number of moles of all the gases at equilibrium is:

(A) 6.5

(B) 7.0

(C) 8

(D) 2.0

20. In chemical equilibrium, the value of Δn (number of molecules), is negative, then the relationship between K_p and K_c will be:

(A) $K_p - K_c = 0$

(B) $K_p = K_c \times (RT)^{+\Delta n}$

(C) $K_p = K_c \times (RT)^{-\Delta n}$

(D) $K_p = \frac{1}{K_c}$

21. For the reaction $CO(g) + 0.5O_2(g) \Longrightarrow CO_2(g) \ K_p \ / \ K_c$ is equal to :

(A) \sqrt{RT}

(B) $\frac{1}{\sqrt{D^2}}$

(C) 1

(D) RT²

22. The equilibrium constant (K_c) of the reaction $A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$ is 50. If 1 mol of A_2 and 2 mol of B_2 are mixed, the amount of AB at equilibrium would be:

(A) 0.934 mol

1

0.467 mol

(C) 1.866 mol

(D) 1.401 mol

23. $A + B \rightleftharpoons C + D$. If initially the concentration of A and B are both equal but at equilibrium, concentration of D will be twice of that of A, then what will be the equilibrium constant of reaction?

(A) 4/9

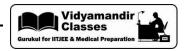
(B)

(B)

(C) 1/9

(D) 4

24. Which of the following is correct for the reaction? $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$


9/4

(A) $K_p = K_c$

(B) $K_p < K_c$

(C) $K_p > K_c$

(D) Pressure is required to predict the correlation

25 .	The equilibrium constant of a reaction is 300. If the volume of reaction flask is tripled, the equilibrium	ın
	onstant is :	

(A) 300

(B) 600

(C) 900

(D) 100

26. Partial pressure of O_2 in the reaction $2Ag_2O\left(s\right) \Longrightarrow 4Ag\left(s\right) + O_2\left(g\right)$ is :

(A) K_P

(B) \sqrt{K}

(C) 3₁K

(D) 2K_P

27. The compounds A and B are mixed in equimolar proportion to form the products, $A + B \rightleftharpoons C + D$. At equilibrium, one third of A and B are consumed. The equilibrium constant for the reaction is :

(A) 0.5

(B) 4.0

(C) 2.5

(D) 0.25

28. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? (K = equilibrium constant)

(A) $A \rightleftharpoons B; K = 0.001$

(B) $M \rightleftharpoons N$; K = 10

(C) $X \rightleftharpoons Y; K = 0.005$

(D) $R \rightleftharpoons P; K = 0.01$

29. The equilibrium, $P_4(s) + 6Cl_2(g) \rightleftharpoons 4PCl_3(g)$ attained by mixing equal moles of P_4 and Cl_2 in a evacuated vessel. Then at equilibrium.

(A) $[Cl_2] > [PCl_3]$

(B) $[Cl_2] > [P_4]$

(C) $[P_4] > [Cl_2]$

(D) $[PCl_3] > [P_4]$

30. Consider the following reaction equilibrium $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

Initially, 1 mole N_2 , 3 moles of H_2 are taken in a 2L flask. At equilibrium state, if the number of moles of N_2 is 0.6, what is the total number of moles of all gases present in the flask?

(A) 0.8

(B) 1.6

(C) 3.2

(D) 6.4